P450s IN OTHER PLANTS
()

   CYP71AV1  

P450 Function Plant Species More ....
CYP51 obtusifolial 14-alpha-demethylase sorghum CYP51
CYP71AV1 artemisinin biosynthesis Artemisia annua  
CYP71A1 unknown function avocado  
CYP71A2 / A3 / A4 unknown function eggplant  
CYP71A5 / A6 unknown function catmint  
CYP71A9 unknown function soybean  
CYP71A10 metabolism of herbicides of the phenylurea class soybean  
CYP71A-like (+)-menthofuran synthase peppermint  
CYP71A1-like unknown function banana  
CYP71B1 unknown function Thlaspi arvense  
CYP71C synthesis of DIBOA (cyclic hydroxamic acid) wheat  
CYP71C2 indolin-2-one 3-hydroxylase, DIMBOA synthesis corn  
CYP71C6v1 function unknown wheat  
CYP71D6 / D7 unknown function Chaco potato  
CYP71D8 unknown function soybean  
CYP71D9 flavonoid 6-hydroxylase soybean  
CYP71D12 tabersonine 16-hydroxylase periwinkle  
CYP71D13 / D15 (-)-limonene-3-hydroxylase mint species  
CYP71D16 CBT-ol to CBT-diol tobacco  
CYP71D18 (-)-limonene-6-hydroxylase spearmint  
CYP71D20 5-epi-aristolochene-1,3-dihydroxylase tobacco  
CYP71D unknown function pepper  
CYP71E1 biosynthesis of dhurrin sorghum  
CYP71N1 unknown function banana  
CYP72A1 secologanin synthase periwinkle  
CYP72A2 unknown function tobacco  
CYP72A5 unknown function, herbicide metabolism corn  
CYP72A unknown function tomato  
CYP72A29 unknown function potato tuber  
CYP73A1 cinnamate 4-hydroxylase (C4H) artichoke CYP73A
CYP73A27 / A28 5-epi-aristolochene-1,3-dihydroxylase tobacco  
CYP74A1 allene oxide synthase (AOS) flaxseed CYP74A
CYP74A2 rubber particle protein (RPP) guayule  
CYP74B1 fatty acid hydroperoxide lyase (HPO lyase) bell pepper CYP74B
CYP74C2 fatty acid hydroperoxide lyase (HPO lyase) cantaloupe melon CYP74C
CYP74D1 divinyl ether synthase tomato CYP74D
CYP75A1 flavonoid 3,5'-hydroxylase (F3'5'H) petunia CYP75A
CYP75B2 flavonoid 3'-hydroxylase (F3'H) petunia CYP75B
CYP76A1 / A2 unknown function eggplant  
CYP76B1 7-ethoxycoumarin o-de-ethylase Jerusalem artichoke  
CYP76B6 geraniol 10-hydroxylase periwinkle CYP76
CYP76F2 unknown function grape  
CYP77A1 / A2 unknown function eggplant  
CYP78A1 lauric acid 12-monooxygenase corn  
CYP78A2 unknown function moth orchid  
CYP78A4 unknown function Monterey pine  
CYP78A11 unknown function rice  
CYP79A1 tyrosine to p-hydroxyphenylacetaldoxime, dhurrin biosynthesis sorghum  
CYP79B1 amino acids to aldoximes, glucosinolate biosynthesis white mustard  
CYP79D1 / D2 linamarin and lotaustralin biosynthesis cassava CYP79D
CYP79E1 / E2 tyrosine to p-hydroxyphenylacetaldoxime, dhurrin biosynthesis seaside arrow grass  
CYP80A1 berbamunine synthase Berberis stolonifera  
CYP80B1 (S)-N-methylcoclaurine 3'-hydroxylase California poppy  
CYP80B2 putative (S)-N-methylcoclaurine 3'-hydroxylase Coptis japonica  
CYP81B1 oxygenated fatty acid biosynthesis Jerusalem artichoke  
CYP81E1 isoflavone 2'-hydroxylase (I2'H) licorice CYP81E
CYP82A1 unknown function, wound inducible pea  
CYP82A2 unknown function tobacco  
CYP82E1 unknown function, products involved in disease resistance tobacco  
CYP84A3 5-hydroxylase for coniferaldehyde, coniferyl alcohol and ferulic acid (F5H) sweetgum CYP84
CYP85 6-deoxocastasterone to castasterone, brassinosteroid biosynthesis tomato CYP85
CYP86MF unknown function, male sterility related gene Brassica campestris  
CYP87A3 unknown function rice  
CYP88A1 ent-kaurenoic oxidase (KAO, Dwf3) maize CYP88
CYP90D2 brassinosteroid synthesis rice CYP90
CYP92A2 unknown function tobacco  
CYP92A5 5-epi-aristolochene-1,3-dihydroxylase tobacco  
CYP92A6 C-2 hydroxylase in brassinosteroid synthesis pea  
CYP92B1 monooxidation of long-chain fatty acids petunia  
CYP93A1 dihydroxypterocarpan 6a-hydroxylase soybean  
CYP93B1 flavone synthase II (FNS II, F2H), licodione synthase licorice CYP93B
CYP93C1 isoflavone synthase, IFS soybean CYP93C
CYP93E aryl migration reaction of isoflavonoid biosynthesis soybean  
CYP94A1 omega fatty acid hydroxylase, cutin monomer synthesis common vetch  
CYP94A2 medium chain fatty acid hydroxylase common vetch  
CYP94A5 fatty acid hydroxylase tobacco  
CYP96C1 terpenoid indole alkaloid production periwinkle  
CYP97E1 unknown function marine diatom  
CYP98A13 p-coumaryl shikimate hydroxylase basil  
CYP98A19 unknown function Pinus taeda  
CYP98A20 p-coumarate 3-hydroxylase Sesamum indicum  
CYP709C1 fatty acid hydroxylase wheat  
CYP701A1 ent-kaurene oxidase (KO), GA biosynthesis pumpkin CYP701A
CYP703A1 lauric acid monooxygenase petunia  
CYP706B1 (+)-delta-cadinene-8-hydroxylase cotton  
CYP710A11 sterol C-22 desaturase tomato  
CYP714D1 gibberellic acid catabolism rice  
CYP719 methylenedioxy bridge-forming enzyme Coptis japonica  
CYP720B1 abietadienol/abietadienal oxidase (PtAO) Loblolly pine  
CYP725A1 taxane 10 beta-hydroxylase yew  
CYP725A2 taxane 13 alpha-hydroxylase yew  
CYP725A3 taxoid 14 beta-hydroxylase yew  
CYP725A-like taxadiene 5-alpha hydroxylase yew  
CYP725A-like taxoid 7β-hydroxylase yew  
CYP726A1 vernolic acid synthesis Euphorbia lagascae  
CYP-not cloned yet (+)-germacrene A hydroxylase chicory  
CYP-not cloned yet (+)-costunolide synthase chicory  
CYP-not cloned yet 7-deoxyloganin 7-hydroxylase Lonicera japonica  
CYP-not cloned yet astaxanthin synthesis Haemotococcus  
CYP-not cloned yet geranylhydroquinone 3'-hydroxylase Lithospermum erythrorhizon  
CYP-not cloned yet deoxypodophyllotoxin 6-hydroxylase Linum flavum  
CYP-not cloned yet xanthone 6-hydroxylase gentian  
CYP-not cloned yet benzoic acid 2-hydroxylase tobacco  
CYP-not cloned yet tryptamine 5-hydroxylase walnut  
CYP-not cloned yet salidroside monooxygenase Abeliophyllum distichum  
CYP-not cloned yet limonene-6-hydroxylase caraway  
CYP-not cloned yet limonene-6-hydroxylase perilla  



References:

CYP51:   obtusifolial 14-alpha-demethylase, sorghum, wheat.
1)  Bak S, Kahn RA, Olsen CE, Halkier BA  (1997)  Cloning and expression in Escherichia coli of the obtusifoliol 14 alpha-demethylase of Sorghum bicolor (L.) Moench, a cytochrome P450 orthologous to the sterol 14 alpha-demethylases (CYP51) from fungi and mammals.  Plant J 11: 191-201.  PubMed
2)  Cabello-Hurtado F, Taton M, Forthoffer N, Kahn R, Bak S, Rahier A, Werck-Reichhart D  (1999)  Optimized expression and catalytic properties of a wheat obtusifolial 14-alpha-demethylase (CYP51) expressed in yeast. Complementation of erg11Delta yeast mutants by plant CYP51.  Eur J Biochem 262: 435-446.  PubMed
3)  Yoshida Y, Aoyama Y, Noshiro M, Gotoh O  (2000)  Sterol 14-demethylase P450 (CYP51) provides a breakthrough for the discussion on the evolution of cytochrome P450 gene superfamily.  Biochem Biophys Res Commun 273: 799-804.  PubMed

CYP51:   obtusifolial 14-alpha-demethylase, tobacco.
Burger C, Rondet S, Benveniste P, Schaller H  (2003)  Virus-induced silencing of sterol biosynthesis genes; identification of a Nicotiana tabacum L. obtusifolial-14 alpha-demethylase (CYP51) by genetic manipulation of the sterol biosynthetic pathway in Nicotiana benthamania L.  J Exp Bot 54: 1675-1683.  PubMed

CYP71AV1:   artemisinin biosynthesis (Artemesia annua).
Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS  (2006)  Artemesia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin.  FEBS Letters 580: 1411-1416.  PubMed

CYP71A1:   unknown function, avocado (Persea americana).
1)  O'Keefe DP, Leto KJ  (1989)  Cytochrome P-450 from the mesocarp of avocado (Persea americana).  Plant Physiol 89: 1141-1149.  
2)  Bozak KR, Yu H, Sirevag R, Christoffersen RE  (1990)  Sequence analysis of ripening-related cytochrome P-450 cDNAs from avocado fruit.  Proc Natl Acad Sci USA 87: 3904-3908.  
3)  Bozak KR, O'Keefe DP, Christoffersen RE  (1992)  Expression of a ripening-related avocado (Persea americana) cytochrome P450 in yeast.  Plant Physiol 100: 1976-1981.  

CYP71A2:  CYP71A3:  CYP71A4:   unknown function, eggplant (Solanum melongena cv. Sinsadoharanasu).
Umemoto N, Kobayashi O, Ishizaki-Nishizawa O, Toguri T  (1993)  cDNAs sequences encoding cytochrome P450 (CYP71 family) from eggplant seedlings.  FEBS Lett 330: 169-173.  PubMed

CYP71A5:  CYP71A6:   unknown function, catmint (Nepeta racemosa).
Clark IM, Forde BG, Hallahan DL  (1997)  Spatially distinct expression of two new cytochrome P450s in leaves of Nepeta racemosa: identification of a trichome-specific isoform.  Plant Mol Biol 33: 875-885.  PubMed

CYP71A9:   unknown function, soybean (Glycine max).
Schopfer CR, Ebel J  (1998)  Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L.) using differential display of mRNA.  Mol Gen Genet 258: 315-322.  PubMed

CYP71A10:   metabolism of herbicides of the phenylurea class, soybean (Glycine max).
1)  Siminszky B, Corbin FT, Ward ER, Fleischmann TJ, Dewey RE  (1999)  Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides.  Proc Natl Acad Sci USA 96: 1750-1755.  PubMed
2)  Siminszky B, Freytag AM, Sheldon BS, Dewey RE  (2003)  Co-expression of a NADPH : P450 reductase enhances CYP71A10-dependent phenylurea metabolism in tobacco.  Pesticide Biochem Physiol 77: 35-43.  

CYP71A-like:   (+)-menthofuran synthase ((+)-pulegone-9-hydroxylase), peppermint (Mentha x piperita), Accession No. AF346833.
Bertea CM, Schalk M, Karp F, Maffei M, Croteau R  (2001)  Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene.  Arch Biochem Biophys 390: 279-286.  PubMed

CYP71A1-like:  unknown function, Cavendish banana (Musa acuminata cv Williams).
Pua EC, Lee YC  (2003)  Expression of a ripening-related cytochrome P450 cDNA in Cavendish banana (Musa acuminata cv. Williams).  Gene 305: 133-140.  PubMed

CYP71B1:   unknown function (Thlaspi arvense).
Udvardi MK, Metzger JD, Krishnapillai V, Peacock WJ, Dennis ES  (1994)  Cloning and sequencing of a full-length cDNA from Thlaspi arvense that encodes a cytochrome P-450.  Plant Physiol 104: 755-756.  PubMed

CYP71C:   synthesis of DIBOA (2,4-dihydroxy-1,4-benzoxazin-3-one, cyclic hydroxamic acid), wheat: CYP71C6, CYP71C7v2, CYP71C8v2, CYP71C9v1, CYP71C9v2.
1)  Glawischnig E, Grun S, Frey M, Gierl A  (1999)  Cytochrome P450 monooxygenases of DIBOA biosynthesis: specificity and conservation among grasses.  Phytochemistry 50: 925-930.  PubMed
2)  Nomura T, Ishihara A, Imaishi H, Endo TR, Ohkawa H, Iwamura H  (2002)  Molecular characterization and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat.  Mol Genet Genomics 267: 210-217.  PubMed

CYP71C2:  indolin-2-one 3-hydroxylase (synthesis of DIMBOA, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), corn (Zea mays).
Frey M, Chomet P, Glawischnig E, Stettner C, Grun S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SB et al.  (1997)  Analysis of chemical plant defense mechanism in grasses.  Science 277: 696-699.  PubMed

CYP71C6v1   unknown function, wheat.
1)  Xiang WS, Wang XJ, Ren TR, Ju XL  (2004)  Expression of a wheat cytochrome P450 monooxygenase in yeast and its inhibition by glyphosate.  Pest Manag Sci 61: 402-406.  PubMed
2)  Xiang WS, Wang XJ, Ren TR, Ci SQ  (2006)  Purification of recombinant wheat cytochrome P450 monooxygenase expressed in yeast and its properties.  Protein Expression and Purification 45: 54-59.  PubMed

CYP71D6:  CYP71D7:   unknown function, Chaco potato (Solanum chacoense).
Hutvagner G, Barta E, Banfalvi Z  (1997)  Isolation and sequence analysis of a cDNA and related gene for cytochrome P450 proteins from Solanum chacoense.  Gene 188: 247-252.  PubMed

CYP71D8:   unknown function, soybean (Glycine max), Accession No. Y10493, Y10490.
Schopfer CR, Ebel J  (1998)  Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L.) using differential display of mRNA.  Mol Gen Genet 258: 315-322.  PubMed

CYP71D9:   flavonoid 6-hydroxylase, soybean (Glycine max).
Latunde-Dada AO, Cabello-Hurtado F, Czittrich N, Didierjean L, Schopfer C, Hertkorn N, Werck-Reichhart D, Ebel J  (2001)  Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase.  J Biol Chem 276: 1688-1695.  PubMed

CYP71D12:   tabersonine 16-hydroxylase, periwinkle (Catharanthus roseus).
1)  Schroder G, Unterbusch E, Kaltenbach M, Schmidt J, Strack D, De Luca V, Schroder J  (1999)  Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase.  FEBS Lett 458: 97-102.  PubMed
2)  Kutchan TM, Schroder J  (2002)  Selected cell cultures and induction methods for cloning and assaying cytochromes P450 in alkaloid pathways.  Meth Enzymol 357: 370-381.

CYP71D13:  CYP71D15:   (-)-limonene-3-hydroxylase, peppermint (M. x piperita).
1)  Lupien S, Karp F, Wildung M, Croteau R  (1999)  Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (-)-4S-limonene-3-hydroxylase and (-)-4S-limonene-6-hydroxylase.  Arch Biochem Biophys 368: 181-192.  PubMed
2)  Haudenschild C, Schalk M, Karp F, Croteau R  (2000)  Functional expression of regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha spp.) in Escherichia coli and Saccharomyces cerevisiae.  Arch Biochem Biophys 379: 127-136.  PubMed
3)  Wust M, Little DB, Schalk M, Croteau R  (2001)  Hydroxylation of limonene enantiomers and analogs by recombinant (-)-limonene 3- and 6-hydroxylases from mint (Mentha) species: evidence for catalysis within sterically constrained active sites.  Arch Biochem Biophys 387: 125-136.  PubMed

CYP71D16:   cembratriene-ol (CBT-ol; cembra-2,7,11-triene-4-ol) to cembratriene-diol (CBT-diol; cembra-2,7,11-triene-4,6-diol), tobacco (Nicotiana tabacum).
1)  Wang E, Wang R, DeParasis J, Loughrin JH, Gan S, Wagner GJ  (2001)  Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance.  Nat Biotechnol 19: 371-374.  PubMed
2)  Wang E, Gan S, Wagner GJ  (2002)  Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L.  J Exp Bot 53: 1891-1897.  PubMed
3)  Wang E, Wagner GJ  (2003)  Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing.  Planta 216: 686-691.  PubMed
4)  Wang EM, Hall JT, Wagner GJ  (2004)  Transgenic Nicotiana tabacum L. with enhanced trichome exudate cembratrieneols has reduced aphid infestation in the field.  Molecular Breeding 13: 49-57.  

CYP71D18:   (-)-limonene-6-hydroxylase, spearmint (Mentha spicata).
1)  Haudenschild C, Schalk M, Karp F, Croteau R  (2000)  Functional expression of regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha spp.) in Escherichia coli and Saccharomyces cerevisiae.  Arch Biochem Biophys 379: 127-136.  PubMed
2)  Schalk M, Croteau R  (2000)  A single amino acid substitution (F363I) converts the regiochemistry of the spearmint (-)-limonene hydroxylase from a C6- to a C3-hydroxylase.  Proc Natl Acad Sci USA 97: 11948-11953.  PubMed
3)  Wust M, Little DB, Schalk M, Croteau R  (2001)  Hydroxylation of limonene enantiomers and analogs by recombinant (-)-limonene 3- and 6-hydroxylases from mint (Mentha) species: evidence for catalysis within sterically constrained active sites.  Arch Biochem Biophys 387: 125-136.  PubMed
4)  Wust M, Croteau RB  (2002)  Hydroxylation of specifically deuterated limonene enantiomers by cytochrome p450 limonene-6-hydroxylase reveals the mechanism of multiple product formation.  Biochemistry 41: 1820-1827.  PubMed

CYP71D20:   5-epi-aristolochene-1,3-dihydroxylase (EAH), tobacco (Nicotiana tabacum), Accession No. AF368376.
1)  Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J  (2001)  Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum).  Arch Biochem Biophys 393: 222-235.  PubMed
2)  Takahashi S, Zhao Y, O'Maille PE, Greenhagen BT, Noel JP, Coates RM, Chappell J  (2005)  Kinetic and molecular analysis of 5-epiaristolochene 1,3-dihydroxylase, a cytochrome P450 enzyme catalyzing successive hydroxylations of sesquiterpenes.  J Biol Chem 280: 3686-3696.  PubMed

CYP71D:   unknown function, pepper (Capsicum annuum), Accession No. AF122821.
Oh BJ, Ko MK, Kim YS, Kim KS, Kostenyuk I, Kee HK  (1999)  A cytochrome P450 gene is differentially expressed in compatible and incompatible interactions between pepper (Capsicum annuum) and the anthracnose fungus, Colletotrichum gloeosporioides.  Mol Plant Microbe Interact 12: 1044-1052.  PubMed

CYP71E1:   biosynthesis of dhurrin, sorghum (Sorghum bicolor).
1)  Kahn RA, Bak S, Svendsen I, Halkier BA, Møller BL  (1997)  Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum.  Plant Physiol 115: 1661-1670.  PubMed
2)  Bak S, Kahn RA, Nielsen HL, Møller BL, Halkier BA  (1998)  Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin.  Plant Mol Biol 36: 393-405.  PubMed
3)  Kahn RA, Fahrendorf T, Halkier BA, Møller BL  (1999)  Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench.  Arch Biochem Biophys 363: 9-18.  PubMed
4)  Bak S, Olsen CE, Halkier BA, Møller BL  (2000)  Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in dhurrin biosynthesis.  Plant Physiol 123: 1437-1448.  PubMed
8)  Kristensen C, Morant M, Olsen CE, Ekstrøm CT, Galbraith DW, Møller BL, Bak S  (2005)  Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome.  Proc Natl Acad Sci USA 102: 1779-1784.  PubMed

CYP71N1:   unknown function, banana ( Musa acuminata).
Pua EC, Lee YC  (2003)  Expression of a ripening-related cytochrome P450 cDNA in Cavendish banana (Musa acuminata cv. Williams).  Gene 305: 133-140.  PubMed

CYP72A1:   secologanin synthase, periwinkle (Catharanthus roseus).
1)  Irmler S, Schroder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schroder J  (2000)  Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase.  Plant J 24: 797-804.  PubMed
2)  Yamamoto H, Katano N, Ooi A, Inoue K  (2000)  Secologanin synthase which catalyzes the oxidative cleavage of loganin into secologanin is a cytochrome P450.  Phytochemistry 53: 7-12.  PubMed

CYP72A2:   unknown function, tobacco (Nicotiana plumbaginifolia).
Smigocki AC, Wilson D  (2004)  Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2.  Biotechnol Lett 26: 1809-1814.  PubMed

CYP72A5:   unknown function, corn (Zea mays).

CYP72A:   unknown function, tomato (Lycopersicon esculentum).
Bartoszewski G, Mujer CV, Niemirowicz SK, Smigocki AC  (2002)  Cloning of a wound inducible Lycopersicon esculentum cytochrome P450 gene and lack of regeneration of transgenic plants with sense or antisense constructs.  J Amer Soc Hort Sci 127 (4): 535-539.  

CYP72A29:   unknown function, potato tuber (Solanum tuberosum).
Kato H, Yamada T  (2003)  Characterization of a wound-inducible cytochrome P450 gene (CYP72A29) that is down-regulated during crown gall tumorigenesis in potato tuber.  Mol Genet Genomics 270: 139-146.  PubMed

CYP73A1:   cinnamate 4-hydroxylase (C4H), artichoke (Helianthus tuberosus).
1)  Batard Y, Schalk M, Pierrel MA, Zimmerlin A, Durst F, Werck-Reichhart D  (1997)  Regulation of the cinamate 4-hydroxylase (CYP73A1) in Jerusalem artichoke tubers in response to wounding and chemical treatments.  Plant Physiol 113: 951-959.  PubMed
2)  Schalk M, Batard Y, Seyer A, Nedelkina S, Durst F, Werck-Reichhart D  (1997)  Design of fluorescent substrates and potent inhibitors of CYP73As, P450s that catalyze 4-hydroxylation of cinnamic acid in higher plants.  Biochemistry 36: 15253-15261.  PubMed
3)  Schalk M, Cabello-Hurtado F, Pierrel M-A, Atanossova R, Saindrenan P, Werck-Reichhart D  (1998)  Piperonylic acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: a new tool to control the flux of metabolites in the phenylpropanoid pathway.  Plant Physiol 118: 209-218.  PubMed
4)  Schalk M, Nedelkina S, Schoch G, Batard Y, Werck-Reichhart D  (1999)  Role of unusual amino acid residues in the proximal and distal heme regions of a plant P450, CYP73A1.  Biochemistry 38: 6093-6103.  PubMed
5)  Schoch GA, Nikov GN, Alworth WL, Werck-Reichhart D  (2002)  Chemical inactivation of the cinnamate 4-hydroxylase allows for the accumulation of salicylic acid in elicited cells.  Plant Physiol 130: 1022-1031.  PubMed
6)  Schoch GA, Attias R, Le Ret M, Werck-Reichhart D  (2003)  Key substrate recognition residues in the active site of a plant cytochrome P450, CYP73A1. Homology guided site-directed mutagenesis.  Eur J Biochem 270: 3684-3695.  PubMed
7)  Schoch GA, Attias R, Belghazi M, Dansette PM, Werck-Reichhart D  (2003)  Engineering of a water-soluble plant cytochrome P450, CYP73A1, and NMR-based orientation of natural and alternate substrates in the active site.  Plant Physiol 133: 1198-1208.  PubMed

CYP73A27:  CYP73A28:   5-epi-aristolochene-1,3-dihydroxylase, tobacco (Nicotiana tabacum).
Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J  (2001)  Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum).  Arch Biochem Biophys  393: 222-235.  PubMed

CYP74A1:   allene oxide synthase (AOS), flaxseed (Linum usitatissimum).
Song W-C, Funk CD, Brash AR  (1993)  Molecular cloning of an allene oxide synthase: A cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides.  Proc Natl Acad Sci USA 90: 8519-8523.  PubMed

CYP74A2:   rubber particle protein (RPP), activity similar to AOS, guayule (Parthenium argentatum).
Pan Z, Durst F, Werck-Reichhart D, Gardner HW, Camara B, Cornish K, Backhaus RA  (1995)  The major protein of guayule rubber particles is a cytochrome P450.  J Biol Chem 270 (13): 8487-8494.  PubMed

CYP74B1:   fatty acid hydroperoxide lyase (HPO lyase), bell pepper.
1)  Matsui K, Shibutani M, Hase T, Kajiwara T  (1996)  Bell pepper fruit fatty acid hydroperoxide lyase is a cytochrome P450 (CYP74B).  FEBS Lett 394: 21-24.  PubMed
2)  Psylinakis E, Davoras EM, Ioannidis N, Trikeriotis M, Petrouleas V, Ghanotakis DF  (2001)  Isolation and spectroscopic characterization of a recombinant bell pepper hydroperoxide lyase.  Biochim Biophys Acta 1533: 119-127.  PubMed
3)  Noordermeer MA, Veldink GA, Vliegenthart JF  (2001)  Fatty acid hydroperoxide lyase: a plant cytochrome p450 enzyme involved in wound healing and pest resistance.  Chembiochem 2: 494-504.  PubMed

CYP74C2:   fatty acid hydroperoxide lyase (HPO lyase), cantaloupe melon (Cucumis melon).
Tijet N, Schneider C, Muller BL, Brash AR  (2001)  Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13-hydroperoxides of linoleic and linolenic acids.  Arch Biochem Biophys 386: 281-289.  PubMed

CYP74D1:   divinyl ether synthase, biosynthesis of divinyl ether oxylipins (anti-fungal toxins), conversion of 9-hydroperoxy linoleic acid and 9-hydroperoxy linolenic acid to divinyl ether fatty acids (colneleic acid and colnelenic acid, respectively), tomato (Lycopersicon esculentum).
Itoh A, Howe GA  (2001)  Molecular cloning of a divinyl ether synthase.  Identification as a CYP74 cytochrome P-450.  J Biol Chem 276: 3620-3627.  PubMed

CYP75A1:   flavonoid 3', 5'-hydroxylase, petunia (Petunia hybrida).
1)  Horton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu C-Y, Farcy E, Stevenson TW, Cornish EC  (1993)  Cloning and expression of cytochrome P450 genes controlling flower colour.  Nature 366: 276-279.  PubMed
2)  Shimada Y, Nakano-Shimada R, Ohbayashi M, Okinaka Y, Kiyokawa S, Kikuchi Y  (1999)  Expression of chimeric P450 genes encoding flavonoid-3',5'-hydroxylase in transgenic tobacco and petunia plants.  FEBS Lett 461: 241-245.  PubMed

CYP75B2:   flavonoid 3'-hydroxylase (F3'H), petunia (Petunia hybrida).
Brugliera F, Barri-Rewell G, Holton TA, Mason JG  (1999)  Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corrresponding to the Ht1 locus of Petunia hybrida.  Plant J 19: 441-451.  PubMed

CYP76A1:  CYP76A2:   unknown function, eggplant (Solanum melongena cv. Sinsadoharanasu).
Toguri T, Kobayashi O, Umemoto N  (1993)  The cloning of eggplant seedling cDNAs encoding proteins from a novel cytochrome P450 family (CYP76).  Biochim Biophys Acta 1216: 165-169.  PubMed

CYP76B1:   7-ethoxycoumarin O-de-ethylase, metabolism of xenobiotics, Jerusalem artichoke (Helianthus tuberosus).
1)  Robineau T, Batard Y, Nedelkina S, Cabello-Hurtado F, LeRet M, Sorokine O, Didierjean L, Werck-Reichhart D  (1998)  The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics.  Plant Physiol 118: 1049-1056.  PubMed
2)  Batard Y, LeRet M, Schalk M, Robineau T, Durst F, Werck-Reichhart D  (1998)  Molecular cloning and functional expression in yeast of CYP76B1, a xenobiotic-inducible 7-ethoxycoumarin O-de-ethylase from Helianthus tuberus.  Plant J 14: 111-120.  PubMed
3)  Didierjean L, Gondet L, Perkins R, Lau SM, Schaller H, O'Keefe DP, Werck-Reichhart D  (2002)  Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke.  Plant Physiol 130: 179-189.  PubMed

CYP76B6:   geraniol 10-hydroxylase, biosynthesis of iridoid monoterpenoids and several classes of monoterpenoid alkaloids, periwinkle (Catharanthus roseus).
1)  Hallahan DL, West JM  (1995)  Cytochrome P-450 in plant/insect interactions: geraniol 10-hydroxylase and the biosynthesis of iridoid monoterpenoids.  Drug Metabol Drug Interact 12: 369-382.  PubMed
2)  Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J  (2001)  Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis.  FEBS Lett 508: 215-220.  PubMed
3)  Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B  (2004)  Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites.  Plant J 38: 131-141.  PubMed

CYP76F2:   unknown function, grape (Vitis vinifera).
Davies C, Robinson SP  (2000)  Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins.  Plant Physiol 122: 803-812.  PubMed

CYP77A1:  CYP77A2   unknown function, eggplant (Solanum melongena cv. Sinsadoharanasu).
Toguri T, Tokugawa K  (1994)  Cloning of eggplant hypocotyl cDNAs encoding cytochrome P450 belonging to a novel family (CYP77).  FEBS Lett 338: 290-294.  

CYP78A1:   lauric acid 12-monooxygenase, corn (Zea mays).
Imaishi H, Matsuo S, Swai E, Ohkawa H   (2000)  CYP78A1 preferentially expressed in developing inflorescences of Zea mays encoded a cytochrome P450-dependent lauric acid 12-monooxygenase.  Biosci Biotechnol Biochem 64: 1696-1701.  PubMed

CYP78A2:   unknown function, pollen tube specific, moth orchid (Phalaenopsis sp. hybrid SM9108).
Nadeau JA, Zhang XS, Li J, O'Neill SD  (1996)  Ovule development: identification of stage-specific and tissue-specific cDNAs.  Plant Cell 8: 213-239.  PubMed

CYP78A4:   unknown function, Monterey pine (Pinus radiata) Accession No. AF049067.
Bishop-Hurley SL, Gardner RC, Walter C  (2003)  Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata.  Plant, Cell Tissue and Organ Culture 74: 267-281.  

  CYP78A11:   substrate unknown, rice (Oryza sativa)
Miyoshi K, Ahn B-O, Kawakatsu T, Ito Y, Itoh J-I, Nagato Y, Kurata N  (2004)  PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450.  Proc Natl Acad Sci USA 101: 875-880.  PubMed

CYP79A1:   conversion of L-tyrosine to p-hydroxyphenylacetaldoxime, first step in the biosynthesis of cyanogenic glucoside dhurrin, sorghum (Sorghum bicolor).
1)  Halkier BA, Sibbesen O, Møller BL  (1996)  Isolation of plant and recombinant CYP79.  Methods Enzymol 272: 268-274. 
2)  Bak S, Nielsen HL, Halkier BA  (1998)  The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinoates.  Plant Mol Biol 38 (5): 725-734.  PubMed
3)  Bak S, Olsen CE, Petersen BL, Møller BL, Halkier BA  (1999)  Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor.  Plant J 20: 663-671.  PubMed
4)  Kahn RA, Fahrendorf T, Halkier BA, Møller BL  (1999)  Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench.  Arch Biochem Biophys 363: 9-18.  PubMed
5)  Bak S, Olsen CE, Halkier BA, Møller BL  (2000)  Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in dhurrin biosynthesis.  Plant Physiol 123: 1437-1448.  PubMed
6)  Petersen BL, Andreasson E, Bak S, Agerbirk N, Halkier BA  (2001)  Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate.  Planta 212: 612-618.  PubMed
7)  Busk PK, Møller BL  (2002)  Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants.  Plant Physiol 129: 1222-1231.  PubMed
8)  Kristensen C, Morant M, Olsen CE, Ekstrøm CT, Galbraith DW, Møller BL, Bak S  (2005)  Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome.  Proc Natl Acad Sci USA 102: 1779-1784.  PubMed

CYP79B1:   conversion of tryptophan to indole-3-acetaldoxime, biosyntheis of indole glucosinolates, white mustard (Sinapis alba).
1)  Du L, Lykkesfeldt J, Olsen CE, Halkier BA  (1995)  Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L.  Proc Natl Acad Sci USA 92: 12505-12509.  PubMed
2)  Bak S, Nielsen HL, Halkier BA  (1998)  The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates.  Plant Mol Biol 38 (5): 725-734.  PubMed
3)  Naur P, Hansen CH, Bak S, Hansen BG, Jensen NB, Nielsen HL, Halkier BA  (2003)  CYP79B1 from Sinapis alba converts tryptophan to indole-3-acetaldoxime.  Arch Biochem Biophys 409: 235-241.  PubMed

CYP79D1:  CYP79D2:  biosynthesis of cyanogenic glucosides linamarin and lotaustralin, cassava (Manihot esculenta).
1)  Anderson MD, Busk PK, Svendsen I, Møller BL  (2000)  Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes.  J Biol Chem 275: 1966-1975.  PubMed
2)  Mikkelsen MD, Halkier BA  (2003)  Metabolic engineering of valine- and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from cassava.  Plant Physiol 131: 773-779.  PubMed
3)  Siritunga D, Sayre RT  (2003)  Generation of cyanogen-free transgenic cassava.  Planta 217: 367-373.  PubMed

CYP79E1:  CYP79E2:   conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of taxiphyllin and triglochinin, seaside arrow grass (Triglochin maritima).
1)  Nielsen JS, Møller BL  (1999)  Biosynthesis of cyanogenic glucosides in Triglochin maritima and the involvement of cytochrome P450 enzymes.  Arch Biochem Biophys 368:121-130.  PubMed
2)  Nielsen JS, Møller BL  (2000)  Cloning and expression of cytochrome P450 enzymes catalyzing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of cyanogenic glucosides in Triglochin maritima.  Plant Physiol 122: 1311-1321.  PubMed

CYP80A1:   berbamunine synthase (Berberis stolonifera).
Kraus PFX, Kutchan TM  (1995)  Molecular cloning and heterologous expression of a cDNA encoding berbamunine synthase, a C-O phenol-coupling cytochrome P450 from the higher plant Berberis stolonifera.  Proc Natl Acad Sci USA 92: 2071-2075.  PubMed

CYP80B1:   (S)-N-methylcoclaurine 3'-hydroxylase, alkaloid biosynthesis, California poppy (Eschscholzia californica)
1)  Pauli HH, Kutchan TM  (1998)  Molecular cloning and functional heterologous expression of two alleles encoding (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B1), a new methyl jasmonate-inducible cytochrome P-450-dependent monooxygenase of benzylisoquinoline alkaloid biosynthesis.  Plant J 13: 793-801.  PubMed
2)  Kutchan TM, Schroder J  (2002)  Selected cell cultures and induction methods for cloning and assaying cytochromes P450 in alkaloid pathways.  Methods Enzymol 357: 370-381.
3)  Park SU, Yu M, Facchini PJ  (2002)  Antisense RNA-mediated suppression of benzophenanthridine alkaloid biosynthesis in transgenic cell cultures of California poppy.  Plant Physiol 128:696-706.  PubMed

CYP80B2:   function not demonstrated, shows high homology to (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B1), (Coptis japonica)
Ikezawa N, Tanaka M, Nagayoshi M, Shinkyo R, Sakaki T, Inouye K, Sato F  (2003)  Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells.  J Biol Chem 278: 38557-38565.  PubMed

CYP81B1:   oxygenated fatty acid biosynthesis, Jerusalem artichoke (Helianthus tuberosus)
Cabello-Hurtado F, Batard Y, Salaün JP, Durst F, Pinot F, Werck-Reichhart D  (1998)  Cloning, expression in yeast, and functional characterization of CYP81B1, a plant cytochrome P450 that catalyzes in-chain hydroxylation of fatty acids.  J Biol Chem 273: 7260-7267.  PubMed

CYP81E1:   isoflavone 2'-hydroxylase (I2'H), licorice (Glycyrrhiza echinata).
1)  Akashi T, Aoki T, Ayabe S  (1998)  CYP81E1, a cytochrome P450 cDNA of licorice (Glycyrrhiza echinata L.), encodes isoflavone 2'-hydroxylase.  Biochem Biophys Res Commun 251: 67-70.  PubMed
2)  Ayabe S, Akashi T, Aoki T  (2002)  Cloning of cDNAs encoding P450s in flavonoid/isoflavonoid pathway from elicited leguminous cell cultures.  Methods Enzymol 357: 360-369.

CYP82A1:   unknown function, pea (Pisum sativum).
1)  Frank MR, Deyneka JM, Schuler MA  (1996)  Cloning of wound-induced cytochrome P450 monooxygenases expressed in pea.  Plant Physiol 110: 1035-1046.  PubMed
2)  Whitbred JM, Schuler MA  (2000)  Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea.  Plant Physiol 124: 47-58.  PubMed

CYP82A2:   unknown function, soybean (Glycine max).
Schopfer CR, Ebel J  (1998)  Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L.) using differential display of mRNA.  Mol Gen Genet 258: 315-322.  

CYP82E1:   products involved in disease resistance, tobacco (Nicotiana tabacum).
Takemoto D, Hayashi M, Doke N, Nishimura M, Kawakita K  (1999)  Molecular cloning of a defense-response-related cytochrome P450 gene from tobacco.  Plant Cell Physiol 40: 1232-1242.  PubMed

CYP84A3:   coniferyl aldehyde 5-hydroxylase, (this paper shows that coniferyl aldehyde 5-hydroxylation is the primary function of CYP84A P450s rather than ferulate-5-hydroxylation), sweetgum (Liquidambar styraciflua), Accession No. AF139532.
Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL  (1999)  Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms.  Proc Natl Acad Sci USA 96: 8955-8960.  

CYP84:   ferulate 5-hydroxylase, (Brassica napus).
Nair RB, Joy RW, Kurylo E, Shi X, Schnaider J, Datla RS, Keller WA, Selvaraj G  (2000)  Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds.  Plant Physiol 123: 1623-1634.  PubMed

CYP85:   brassinosteroid biosynthesis, C-6 oxidation of 6-deoxocastasterone to castasterone, tomato (Lycopersicon esculentum).
1)  Bishop GJ, Harrison K, Jones JDG  (1996)  The tomato dwarf gene isolated by heterologous transposon tagging encodes the first member of a new family of cytochrome P450.  Plant Cell 8: 959-969.  PubMed
2)  Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y  (1999)  The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis.  Proc Natl Acad Sci USA 96: 1761-1766.  PubMed

CYP86MF:   function unknown, Chinese cabbage (Brassica campestris).
1)  Ye WZ, Cao JS, Xiang X, Zeng GW  (2003)  Molecular cloning and characterization of the genic male sterility related gene CYP86MF in Chinese cabbage (Brassica campestris L. ssp chinensis Makino var. communis Tsen et Lee).  J Hort Sci Biotechnol 78: 319-323.  
2)  Yu XL, Cao JS, Ye WZ, Wang YQ  (2004)  Construction of an antisense CYP86MF gene plasmid vector and production of a male-sterile Chinese cabbage transformant by the pollen-tube method.  J Hort Sci Biotechnol 79: 833-839.  PubMed
3)  Cao JS, Yu XL, Ye WZ, Lu G, Xiang X  (2006)  Functional analysis of a novel male fertility CYP86MF gene in Chinese cabbage (Brassica campestris L. ssp chinensis makino).  Plant Cell Reports 24: 715-723.  PubMed

CYP87A3:   function unknown, rice (Oryza sativa L. subsp. japonica cv Nihonmasari).
Chaban C, Waller F, Furuya M, Nick P  (2003)  Auxin responsiveness of a novel cytochrome P450 in rice coleoptiles.  Plant Physiol 133: 2000-2009.  PubMed

CYP88A1:   GA biosynthesis, ent-kaurenoic oxidase (KAO, Dwarf3), corn (Zea mays).
1)  Winkler RG, Helentjaris T  (1995)  The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis.  Plant Cell 7: 1307-1317.  PubMed

CYP90D2:   brassinosteroid synthesis (6-deoxoteasterone to 3-dehydro-6-deoxoteasterone and teasterone to 3-dehydroteasterone), rice (Oryza sativa).
Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M  (2003)  A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450.  Plant Cell 15: 2900-2910.  PubMed

CYP92A2:   unknown function, tobacco (Nicotiana tabacum).
Czernic P, Huang HC, Marco Y  (1996)  Characterization of hsr201 and hsr215, two tobacco genes preferentially expressed during the hypersensitive reaction provoked by phytopathogenic bacteria.  (unpublished)

CYP92A5:   5-epi-aristolochene-1,3-dihydroxylase, tobacco (Nicotiana tabacum).
Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J  (2001)  Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum).  Arch Biochem Biophys 393: 222-235.  PubMed

CYP92A6:   C2-hydroxylase in brassinosteroid synthesis (substrate uncertain), pea (Pisum sativum).
1)  Kang J, Yun J, Kim D, Chung K, Fujioka S, Kim J, Dae H, Yoshida S, Takatsuto S, Song P, Park C  (2001)  Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth.  Cell 105: 625-636.  PubMed
2)  Clouse SD  (2001)  Integration of light and brassinosteroid signals in etiolated seedling growth.  Trends Plant Sci 6: 443-445.  PubMed

CYP92B1:   monooxidation of long chain fatty acids, petunia (Petunia hybrida).
Petkova-Andonova M, Imaishi H, Ohkawa H  (2002)  CYP92B1, a cytochrome P450, expressed in petunia flower buds, that catalyzes monooxidation of long-chain fatty acids.  Biosci Biotechnol Biochem 66: 1819-1828.  PubMed

CYP93A1:   dihydroxypterocarpan 6-alpha-hydroxylase, soybean (Glycine max).
1)  Suzuki G, Ohta H, Kato T, Igarashi T, Sakai F, Shibata D, Takano A, Masuda T, Shioi Y, Takamiya K  (1996)  Induction of a novel cytochrome P450 (CYP93 family) by methyl jasmonate in soybean suspension-cultured cells.  FEBS Lett 383: 83-86.  
2)  Schopfer CR, Kochs G, Lottspeich F, Ebel J  (1998)  Molecular characterization and functional expression of dihydroxypterocarpan 6a-hydroxylase, an enzyme specific for pterocarpanoid phytoalexin biosythesis in soybean (Glycine max L.).  FEBS Lett 432: 182-186.  PubMed

CYP93B1:   (2S)-flavanone 2-hydroxylase (FNS II, F2H), licorice (Glycyrrhiza echinata).
1)  Otani K, Takahashi T, Furuya T, Ayabe S  (1994)  Licodione synthase, a cytochrome P450 monooxygenase catalyzing 2-hydroxylation of 5-deoxyflavanone, in cultured Glycyrrhiza echinata L. cells.  Plant Physiol 105: 1427-1432.  PubMed
2)  Akashi T, Aoki T, Ayabe S  (1998)  Identification of a cytochrome P450 cDNA encoding (2S)-flavanone 2-hydroxylase of licorice (Glycyrrhiza echinata L.; Fabaceae) which represents licodione synthase and flavone synthase II.  FEBS Lett 431: 287-290.  PubMed
3)  Akashi T, Fukuchi-Mizutani M, Aoki T, Ueyama Y, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Ayabe S  (1999)  Molecular cloning and biochemical characterization of a novel cytochrome P450, Flavone Synthase II, that catalyzes direct conversion of flavanones to flavones.  Plant Cell Physiol 40: 1182-1186.  PubMed
4)  Ayabe S-I, Akashi T, Aoki T  (2002)  Cloning of cDNAs encoding P450s in flavonoid/isoflavonoid pathway from elicited leguminous cell cultures.  Methods Enzymol 357: 360-369.

CYP93C1:   isoflavone synthase (IFS), oxidation of 7, 4'-dihyroxyflavanone (liquiritigenin) or 5,7,4'-trihydroxyflavanone (naringenin) to daidzein or genistein, respectively, soybean (Glycine max).
Jung W, Yu O, Lau SM, O'Keefe DP, Odell J, Fader G, McGonigle B  (2000)  Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes.  Nature Biotechnol 18: 208-212.  PubMed

CYP93E:   aryl migration reaction of isoflavonoid biosynthesis, soybean (Glycine max).
Steele CL, Gijzen M, Qutob D, Dixon RA  (1999)  Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean.  Arch Biochem Biophys 367: 146-150.  PubMed

CYP94A1:   fatty acid omega hydroxylase, cutin monomer synthesis, common vetch (Vicia sativa).
1)  Pinot F, Benveniste I, Saluan JP, Durst F  (1998)  Methyl jasmonate induces lauric acid omega-hydroxylase activity and accumulation of CYP94A1 transcripts but does not affect epoxide hydrolase activities in Vicia sativa seedlings.  Plant Physiology 118: 1481-1486.  PubMed
2)  Tijet N, Helvig C, Pinot F, Bouquin RL, Lesot A, Durst F, Salaün JP, Benveniste I  (1998)  Functional expression in yeast and characterization of a clofibrate-inducible plant cytochrome P-450 (CYP94A1) involved in cutin monomers synthesis.  Biochem J 332: 583-589.  PubMed
3)  Pinot F, Benveniste I, Salaün JP, Loreau O, Noel JP, Schreiber L, Durst F  (1999)  Production in vitro by the cytochome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant-pathogen interactions: enantioselectivity studies.  Biochem J 342: 27-32.  PubMed
4)  Pinot F, Skrabs M, Compagnon V, Salaun JP, Benveniste I, Schreiber L, Durst F  (2000)  omega-Hydroxylation of epoxy- and hydroxy-fatty acids by CYP94A1: possible involvement in plant defence.  Biochem Soc Trans 28: 867-870.  PubMed
5)  Benveniste I, Bronner R, Wang Y, Compagnon V, Michler P, Schreiber L, Salaun JP, Durst F, Pinot F  (2005)  CYP94A1, a plant cytochrome P450-catalyzing fatty acid omega-hydroxylase, is selectively induced by chemical stress in Vicia sativa seedlings.  Planta 221: 881-890.  PubMed

CYP94A2:   medium chain fatty acid hydroxylase, common vetch (Vicia sativa).
1)  Le Bouquin R, Pinot F, Benveniste I, Salaun JP, Durst F  (1999)  Cloning and functional characterization of CYP94A2, a medium chain fatty acid hydroxylase from Vicia sativa.  Biochem Biophys Res Commun 261: 156-162.  PubMed
2)  Kahn RA, Le Bouquin R, Pinot F, Benveniste I, Durst F  (2001)  A conservative amino acid substitution alters the regiospecificity of CYP94A2, a fatty acid hydroxylase from the plant Vicia sativa.  Arch Biochem Biophys 391: 180-187.  PubMed

CYP94A5:   fatty acid oxidation, tobacco (Nicotiana tabacum).
Le Bouquin R, Skrabs M, Kahn R, Benveniste I, Salaun JP, Schreiber L, Durst F, Pinot F  (2001)  CYP94A5, a new cytochrome P450 from Nicotiana tabacum is able to catalyze the oxidation of fatty acids to the omega-alcohol and to the corresponding diacid.  Eur J Biochem 268: 3083-3090.  PubMed

CYP96C1:   involved in terpenoid indole alkaloid production, periwinkle (Catharanthus roseus).
Oudin A, Hamdi S, Ouelhazi L, Chenieux JC, Rideau M, Clastre M  (1999)  Induction of a novel cytochrome P450 (CYP96 family) in periwinkle (Catharanthus roseus) cells induced for terpenoid indole alkaloid production.  Plant Science 149: 105-113.  

CYP97E1:   marine diatom (Skeletonema costatum).
Yang S, Wu RSS, Mok HOL, Zhang ZP, Kong RYC  (2003)  Identification of a novel cytochrome P450 cDNA, CYP97E1, from the marine diatom Skeletonema costatum Bacillariophyceae.  J Phycol 39: 555-560.  

CYP98A6:   4-coumaroyl-4'-hydroxyphenyllactic acid 3-hydroxylase, rosmarinic acid biosynthesis, (Lithospermum erythrorhizon).
Matsuno M, Nagatsu A, Ogihara Y, Ellis EB, Mizukami H  (2002)  CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4'-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis.  FEBS Lett 514: 219-224.  PubMed

CYP98A13:   p-coumaroyl shikimate hydroxylase, sweet basil (Ocimum basilicum).
Gang DR, Beuerle T, Ullman P, Werck-Reichhart D, Pichersky E  (2002)  Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by activities of specific acyltransferases and hydroxylases.  Plant Physiol 130: 1536-1544.  PubMed

CYP98A19:   (Pinus taeda), Accession No. AY064170.
Anterola AM, Jeon JH, Davin LB, Lewis NG  (2002)  Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism.  J Biol Chem 277: 18272-18280.  PubMed

CYP98A20:   p-coumarate 3-hydroxylase, (Sesamum indicum), Accession No. AY065995.
Anterola AM, Jeon JH, Davin LB, Lewis NG  (2002)  Transcriptional control of monolignol biosynthesis in Pinus taeda:factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism.  J Biol Chem 277: 18272-18280.  PubMed

CYP701A1:   ent-kaurene oxidase (KO), pumpkin (Cucurbita maxima), Accession No. AF212990.
Helliwell CA, Olive MR, Gebbie L, Forster R, Peacock WJ, Dennis ES  (2000)  Isolation of an ent-kaurene oxidase cDNA from Cucurbita maxima.  Aust J Plant Physiol 27: 1141-1149.  

CYP703A1:   lauric acid monooxygenase, petunia (Petunia hybrida).
Imaishi H, Matsumoto Y, Ishitobi U, Ohkawa H  (1999)  Encoding of a cytochrome P450-dependent lauric acid monooxygenase by CYP703A1 specifically expressed in the floral buds of Petunia hybrida.  Biosci Biotechnol Biochem 63: 2082-2090.  PubMed

CYP706B1:   (+)-delta-cadinene-8-hydroxylase, sesquiterpene biosynthesis, cotton (Gossypium barbadense).
Luo P, Wang YH, Wang GD, Essenberg M, Chen XY  (2001)  Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis.  Plant J 28: 95-104.  PubMed

CYP709C1:   fatty acid hydroxylase, wheat ().
Kandel S, Morant M, Benveniste I, Blee E, Werck-Reichhart D, Pinot F  (2005)  Cloning, functional expression, and characterization of CYP709C1, the first sub-terminal hydroxylase of long chain fatty acid in plants. Induction by chemicals and methyl jasmonate.  J Biol Chem 280: 35881-35889.  PubMed

CYP710A11:   sterol C-22 desaturase, tomato ().
Morikawa T, Mizutani M, Aoki N, Watanabe B, Saga H, Saito S, Oikawa A, Suzuki H, Sakurai N, Shibata D, Wadano A, Sakata K, Ohta D  (2006)   Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in Arabidopsis and tomato.  Plant Cell, Mar 10; [Epub ahead of print].  PubMed

CYP714D1:   gibberellic acid catabolism, rice (Oryza sativa).
1)  Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z  (2006)  ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice.  Plant Cell 18: 442-456.  PubMed
2)  Ma HK, Zhang SB, Ji L, Zhu HB, Yang SL, Fang XJ, Yang RC  (2006)  Fine mapping and in silico isolation of the EUI1 gene controlling upper internode elongation in rice.  Plant Mol Biol 60 : 87-94.  PubMed

CYP719:   methylenedioxy bridge-forming enzyme, (Coptis japonica).
Ikezawa N, Tanaka M, Nagayoshi M, Shinkyo R, Sakaki T, Inouye K, Sato F  (2003)  Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells.  J Biol Chem 278: 38557-38565.  PubMed

CYP720B1:   abietadienol/abietadienal oxidase, (loblolly pine).
Ro D-K, Arimura G-I, Lau SYW, Piers E, Bohlmann J  (2005)  Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase.  Proc Natl Acad Sci USA 102: 8060-8065.  PubMed

CYP725A1:   taxane 10 beta-hydroxylase, yew (Taxus cuspidata), Accession No. AF318211.
1)  Schoendorf A, Rithner CD, Williams RM, Croteau RB  (2001)  Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast.  Proc Natl Acad Sci USA 98: 1501-1506.   PubMed
2)  Wheeler AL, Long RM, Ketchum RE, Rithner CD, Williams RM, Croteau R   (2001)  Taxol biosynthesis: differential transformations of taxadien-5 alpha-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells.  Arch Biochem Biophys 390: 265-278.  PubMed

CYP725A2:   taxane 13 alpha-hydroxylase, yew (Taxus cuspidata), Accession No. AY056019.
Jennewein S, Rithner CD, Williams RM, Croteau RB  (2001)  Taxol biosynthesis: taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase.  Proc Natl Acad Sci USA 98: 13595-13600.  PubMed

CYP725A3:   taxoid 14 beta-hydroxylase, yew (Taxus cuspidata), Accession No. AY188177.
Jennewein S, Rithner CD, Wiliams RM, Croteau R  (2003)  Taxoid metabolism: Taxoid 14 beta-hydroxylase is a cytochrome P450-dependent monooxygenase.  Arch Biochem Biophys 413: 262-270.  PubMed

CYP725A-like:   taxadiene 5-alpha hydroxylase, yew Taxus cuspidataI>), Accession No. AY289209.
Jennewein S, Long RM, Williams RM, Croteau R  (2004)  Cytochrome P450 taxadiene 5-alpha-hydroxylase, a mechanistically unusual monooxygenease catalyzing the first oxygenation step of taxol biosynthesis.  Chem Biol 11: 379-387.  PubMed

CYP725A-like   taxoid 7β-hydroxylase, yew Taxus cuspidataI>), Accession No. AY307951.
Chau M, Jennewein S, Walker K, Croteau R  (2004)  Taxol biosynthesis: Molecular cloning and characterization of a cytochrome P450 taxoid 7β-hydroxylase.  Chem Biol 11: 663-672.  PubMed

CYP726A1:   vernolic acid synthesis (Euphorbia lagascae).
Cahoon EB, Ripp KG, Hall SE, McGonigle B  (2002)  Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from Euphorbia lagascae seed.  Plant Physiol 128: 615-624.  PubMed

CYP-not cloned yet:   (+)-germacrene A hydroxylase, chicory (Cichorium intybus).
de Kraker JW, Franssen MC, Dalm MC, de Groot A, Bouwmeester HJ  (2001)  Biosynthesis of germacrene A carboxylic acid in chicory roots. Demonstration of a cytochrome P450 (+)-germacrene A hydroxylase and NADP+-dependent sesquiterpenoid dehydrogenase(s) involved in sesquiterpene lactone biosynthesis.  Plant Physiol 125: 1930-1940.  PubMed

CYP-not cloned yet:   (+)-costunolide synthase, chicory (Cichorium intybus).
de Kraker JW, Franssen MCR, Joerink M, de Groot A, Bouwmeester HJ  (2002)  Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demonstration of cytochrome P450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory.  Plant Physiol 129: 257-268.  PubMed

CYP-not cloned yet:   7-deoxyloganin 7-hydroxylase, (Lonicera japonica).
Katano N, Yamamoto H, Iio R, Inoue K  (2001)  7-Deoxyloganin 7-hydroxylase in Lonicera japonica cell cultures.  Phytochemistry 58: 53-58.  PubMed

CYP-not cloned yet:   astaxanthin synthetase, (Haemotococcus pluvialis).
Schoefs B, Rmiki N, Rachadi J, Lemoine Y  (2001)  Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids.  FEBS Lett 500:125-128.  PubMed

CYP ?   astaxanthin synthetase, (Phaffia rhodozyma).
Hoshino T, Ojima K, Setoguchi Y  (2000)  Astaxanthin synthase. United States Patent No. 6,365,386.  Patent

CYP-not cloned yet:   geranylhydroquinone 3'-hydroxylase, shikonin and dihydroechinofuran biosynthesis, (Lithospermum erythrorhizon).
Yamamoto H, Inoue K, Li SM, Heide L  (2000)  Geranylhydroquinone 3'-hydroxylase, a cytochrome P-450 monooxygenase from Lithospermum erythrorhizon cell suspension cultures.  Planta 210: 312-317.  PubMed

CYP-not cloned yet:   deoxypodophyllotoxin 6-hydroxylase, (Linum flavum)
Molog GA, Empt U, Kuhlmann S, van Uden W, Pras N, Alfermann AW, Petersen M  (2001)   Deoxypodophyllotoxin 6-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum flavum involved in the biosynthesis of cytotoxic lignans.  Planta 214: 288-294.  PubMed

CYP-not cloned yet:   xanthone 6-hydroxylase, gentian (Centaurium erythraea), (Hypericum androsaemum).
Schmidt W, Peters S, Beerhues L  (2000)  Xanthone 6-hydroxylase from cell cultures of Centaurium erythraea RAFN and Hypericum androsaemum L.  Phytochemistry 53: 427-431.  PubMed

CYP-not cloned yet:   benzoic acid 2-hydroxylase, tobacco (Nicotiana tabacum).
Leon J, Shulaev V, Yalpani N, Lawton MA, Raskin I  (1995)  Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis.  Proc Natl Acad Sci 92: 10413-10417.  PubMed

CYP-not cloned yet:   tryptamine 5-hydroxylase, walnut.
Schroder P, Abele C, Gohr P, Stuhlfauth-Roisch U, Grosse W  (1999)  Latest on enzymology of serotonin biosynthesis in walnut seeds.  Adv Exp Med Biol 467: 637-644.  

CYP-not cloned yet:  salidroside monooxygenase, formation of benzoquinol moiety in cornoside, (Abeliophyllum distichum).
Yamamoto H, Hori M, Kuwajima H, Inoue K  (2003)  Formation of benzoquinol moiety in cornoside by salidroside mono-oxygenase, a cytochrome P450 enzyme, from Abeliophyllum distichum cell suspension cultures.  Planta 216: 432-436.  PubMed

CYP-not cloned yet:  limonene-6-hydroxylase, caraway (Carum carvi).
Bouwmeester HJ, Konings MCJM, Gershenzon J, Karp F, Croteau R  (1999)  Cytochrome P-450 dependent (+)-limonene-6-hydroxylation in fruits of caraway (Carum carvi).  Phytochemistry 50: 243-248.

CYP-not cloned yet:  limonene-7-hydroxylase, perilla (Perilla frutescens).
Karp F, Mihaliak CA, Harris JI, Croteau R  (1990)  Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata) and perilla (Perilla frutescens) leaves.  Arch Biochem Biophys 276: 219-226.  



Comments? Questions?   email:  joan.krochko@nrc-cnrc.gc.ca   website:  P450s in Plants
Plant Biotechnology Institute, National Research Council, Saskatoon, Saskatchewan   CANADA   S7N0W9
()